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HOMOGENEOUS SOLUTIONS AND SAINT-VENANT 
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(Received 22 May 1997) 

The three-dimensional problem of the theory of elasticity for a spring with a stress-free side surface is investigated. In [1] the 
problem was reduced to an eigenvalue problem on a section, which enables a complete system of homogeneous elementary 
solutions to be constructed, and a group of 12 elementary solutions were distinguished, on the basis of which the construction 
of a Saint-Venant solution was reduced to two types of two-dimensional problems and an algebraic system of equations in the 
coefficients of the expansion. A variational formulation of these problems is given and the results of an asymptotic and numerical 
investigation of all solutions and of the stiffness matrix are presented. © 1998 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  T H E  H O M O G E N E O U S  
S O L U T I O N S  F O R  A S P R I N G  

The spring will be regarded as a three-dimensional elastic body, which is obtained by the helical motion 
of a plane figure S, situated in the d~ = const plane of a cylindrical system of coordinates r, ~b, z. We will 
use the following notation: r 0 is the distance from the z axis to the centre of gravity of the figure S, h is 
the pitch of the spring, p is the shear modulus and v is Poisson's ratio. 

We will introduce a new system of coordinates, connected with the cylindrical system by the following 
relations 

~=r-r o, ~2=z-~ho, ~ 3 = ~ = ( ~ + 2 ~ ( m - I )  

~l, ~2 ~S, ~ [ 0 , r l ] , - q = 2 7 t n + a  (0~<a<2~) ,  h 0 = h / ( 2 n ) ,  m = l  ..... n 
(1.1) 

Here n is the number of turns in the section d~ = const (0 ~< d~ ~< 2n), the variable ~ defines the section 
of the spring, while ~1, ~2 is a point in the chosen section, and the values ~ = 0, ~ = rl correspond to 
the end sections of the spring. 

In the new system of coordinates V = S × [0, rl] is the region occupied by the spring and F = bS x 
[0, 11] are the side surface, where bS is the boundary of S. The projections of the outward unit normal 
N on to the unit normal of the cylindrical system of coordinates are related to the projections of the 
unit normal to S as follows: 

Nr=Nl= n-L, Nz=N2 =n'2-2, N#=N3=-fn2; w=(l+f2n22) ~, f=hor (1.2) 
w 141 w 

We will now consider the fundamental relations of the theory of elasticity. If we take into account 
that 

V =ej31 + e 2 0  2 +eD, D = 1 (O - hob 2), 0 O 
~ -- O-~'~ ' r =0-~' 

a = l , 2  

we obtain the following expressions for the components of the strain tensor 

ej~ = ¢3~uj, e22 = ~2u2 , e33 = D u  3 + u I / r 
(1.3) 

2el2=Olu 2+02u j, 2el3=Du I+OIu 3 - u  3 / r ,  2e23=Du 2+02u 3 

Here and below el = er, ez = ez, e = e3 = %, where er, e: and % are the unit vectors of a cylindrical 
system of coordinates and uk are the components of the displacement vector u. 
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Note 1. The fundamental relations, such as the components of the strain tensor and the equilibrium equations 
in the stresses and displacements, can be obtained from the corresponding expressions in a cylindrical system of 
coordinates [2] by replacing the operator r-la by the operator D. 

The object of the investigation is the following problem of the theory of elasticity: It is required to 
find the solution of the equations of the theory of elasticity in the region V, which satisfies the following 
boundary conditions 

Ni~ijl r = 0 (1.4) 

uil~= 0 = 0, ¢~3i1~=i1 = Pi (1 .5 )  

Here and blow ~/j are the components of the strain tensor, p/are the specified external stresses, Latin 
subscripts take the values 1, 2, and 3, Greek subscripts take the values 1 and 2, and summation is carried 
out over repeated subscripts. 

Basing ourselves on boundary conditions (1.4) and (1.5), we will call this problem the Saint-Venant 
problem for a spring. 

In [1] the problem was reduced to the following operator equation 

L(/9)u = lL(3)u, M(/~)u } = 0 

L(3)u = ~2Cu + 3Bu + Au, M(~)u = (~Gu + Eu)lr 

(1.6) 

and the equivalent eigenvalue problem 

L('t)a = 0 (1 .7)  

provided that u = a(~l, ~2)e v~. 
Relations (1.6) symbolize the equilibrium equations and the boundary conditions on the side surface 

F, and A, B, C, G, E are differential operators with respect to the variables ~1, ~2, the specific form of 
which can easily be established on the basis of note 1. 

Basing ourselves on the consideration that the components of the vector of the rigid displacement 
of a spring can be represented by the following expressions 

u OI = C3 e~ + C4 e-i~ 4. C 5 (~ + ho-1~2 )e i~ -I- C 6 (~  + hf f l~2)e  -K 

u O = CI - C5 h~l rei~ - C6hol re-i~ (1 .8 )  

u3 o = iC3e~ _ iC4e-~ + iCs(~ + h~l~2 )eg _ iC6(~ + hfft~2 )e-~ + C2r l ro 

Ci =a z, C2=cOzro, C3=(ax-ia.v)12, Ca=(ax+iar)12 

C s=ho(cor+ioax)12, C6=ho(tOy-itOx)12 

we can conclude that ~ = 0, i, -i are the eigenvalues of eigenvalue problem (1.7), where ~, = 0 corresponds 
to the pair of eigenvectors 

al = (0,  1 ,0 ) ,  a2 = (0, O, r/ro) 

~, = i correspond to the eigenvector and associated vector 

a 3 = ( I . 0 , i ) ,  a 5 = r o l ( ~ 2 , - r , i ~ 2 )  

and ~, = -4 correspond to the eigenvector and associated vector 

a 4 = a3 ,  a 6 = a 5 

where a* is the complex conjugate of a. In expressions (1.8) a °, ay °, az° are the components of the vector 
a ° of the translational displacement in a Cartesian system of coordinates and COx, O)x,O~z are the compon- 
ents of the vector co of the angle of small rotation. 

However, the system of eigenvectors and associated vectors given above does not exhaust the root 
subspaces of these eigenvalues. The eigenvectors al and az have a single associated vector, namely a 7 
and as respectively, which are solutions of the boundary-value problems 
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Aha 7 =0, Eha71~s=(O, n2f , -n2)  (1.9) 

Aha s =(2,0,0), Ehasl~s=(-2Onl,-2On2,2(l+O)fn2), 0 = v / ( 1 - 2 v )  (1.10) 

The eigenvector a3, in addition to the associated vector a5, has two more associated vectors a9 and 
a11, which are solutions of the following boundary-value problems 

Lh(i)ap = F ~, Mh(i)ap = f  p (13=9,11) (1.11) 

F9 =-(iCh + Bh)a 3, fg =-Gha3, Fl| =-(iCh + Bh)a9- 2Cha3, f l l=-Gna9 

The eigenvector a4, in addition to the associated vector a6, has two more associated vectors, namely 
aio = a~ and a12 = a~l. 

The specific form of the vectors F~,,j]p was derived previously in [1], so below we will give the variational 
formulation of problem (1.9)-(1.11). 

The system of eigenvectors and associated vectors described above defines 12 linearly independent 
elementary solutions 

U I = a  I, u = a  2, u3 =e~a3, U4 =ll.! ;, U5 =e~(~a3 +as), u 6 = u  5 

u 7 =~al +a  7, u s =~a 2 +as, 119 =e~(I/2~2a3 +~,a5 +a9), ulo =u9 (1.12) 

n i l  = e~  (~6 ~3a3.4-/1~ ~2a5 + ~a  9 + a l l )  , U12 = U~I 

The remaining part of the set of eigenvalues Ap possesses the following property. 

Property 1. Among the eigenvalues "tk e Ap there is none that is pure imaginary. 
This property can be proved using the same methods that were employed to prove the analogous 

property for a naturally twisted rod [3]. 
We will denote the stress vector in the section ~ = const by o(ol3, o23, o33). Basing on the theorem 

on the completeness of a system of elementary solutions [4], the solution of problem (1.6) can be 
represented in the form 

u = u s + u  p, o=os+0 p (1.13) 

6 6 
U s ---- ~ " [ C I U I ( ~ ) + C 6 + I U 6 + I ( ~ - I ~ ) ] ,  0 s ---- '~ 'C1+60.1+6(~--T~) 

/=1 I=1 

6 (1.14) 
up = y.c,u,(~), Op =tEcj%(~-~) 

k = 

where Cr are arbitrary constants, which are found from the infinite systems obtained when boundary 
conditions (1.5) are satisfied (a method of constructing such systems was presented in [4, 5]) 

0 . ,=0,  m= 1 ..... 6 

o 7=Bb I, o s = B b  2, O 9=Bb3e ~, O=o=BO~ 

0=1({) =B({b3 +bs)e g, 012 ({) = 0;1({) 

The components of the vectors b ~  (the first subscript corresponds to the projection while the second 
corresponds to the number of the vector) are defined by the expressions 

b;m = Dmal6+m +~la~+m -a~+ m I r + b°m, b2m = Dm~)2a26+m -t"~2a36+m +bOrn 
b3m = 2[(1 + O)( D, na3~+, , + a;6+m I r) + i)lal6+, n + ~2a26+m ] + #0 

b°l=O, b° l= l l r ,  b°l=O, /71°=0, b°2=O, b°2=2(l+O)lro 

bl° = b°4 = ~21(rro), b°3 = b°4 = - l  l ro, b3°a = b°; = 2(l +O)i~21(rro) 

(1.15) 
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b, O = bl°; = at9 / r, b°5 = b°6 = a29 / r, b°5 = b~ = 2(I + 8)a39 / r 

D m=ho~ 2 (re=l,2), D m=hoa2+i (m=3,5), D m=ho32-i (m=4,6) 

From the generalized orthogonality relations we have 

(ok(~),at)=O, / = I  . . . . .  6 
(1.16) 

(b,a) = Ib*a*dS = Ibjta~tdS, j = 1,2,3 

Here and everywhere later the integration is carried out over the section S. 
By virtue of property 1 the terms u? and a, define the boundary layer in the neighbourhood of the 

spring ends ~ = 0, 11, and by virtue of relations (1.16) the stress state corresponding to it is self-balanced 
in any section ~ = const. Hence, it is natural to call Us the Saint-Venant solution for the spring. Unlike 
a cylinder, in this case all the components of the stress tensor, defined with respect to the vector us, are 
non-zero, and it is this that causes the main difficulties in using the semi-inverse method. 

The vector ors defines the non-self-balanced part of the stress state of the spring. In fact, if or s is 
successively multiplied by a*m and integrated over S, we obtain the following relations for the shear forces 
Qt~c~), the normal force a3(~), the bending moments M ~ )  and the twisting m o m e n t  M3(~) 

d, zC7 + d21C s = Q2, di2C7 + d22Cs = Q3 - M2 1 r o (1.17) 

d35C9 + [d35(~- rl)+ds5]Cll = rol(inl + M3 -roQ2), d53Cll = Q1 -iQ3 

Qj=I(~/3dS, Ml =I(~33~2dS, M2=-I(133~IdS, M3=I(~la23-~2(131)dS 

If we put ~ = q in expressions (i 17), and in the expressions for Q. and Mj instead of ~/3 we substitute • :/ 
their boundary values p/, we obtain equations for determining the constants Cr (r = 7, 8, 9, ii) and, 
moreover, C10 = C~, C~2 = C~'~. Here the elements of the stiffness matrix dlm = (bl, am), taking into 
account the specific form of the vectors am and some specific properties of the scalar products of vectors, 
from the Jordan chains [4], can be calculated using the following expressions 

d,, = f b2,dS, dz, = d,2 = f d2zdS = rol ~ b3,rdS, d22 = I b32rdS 

d35 = -d53 = - r o  ! I (bl 3~2 - ib33~2 - b23r)dS = I (b13 - ib33)dS = 21 b 13dS (1.18) 

d55 = r o l l  (b15~ 2 - ib35~2 - b25r)dS = -2irff I ~ b35~2 dS 

All the remaining elements are equal to zero. 

Note 2. The  coefficients Ct+6 of the Saint-Venant solution (1.16) are defined exactly by relations (1.17) and (1.18). 
The coefficients CI can be found exactly only from infinite systems, and approximately by solving the following 
algebraic system 

dllCl +d21C2 = gl, dl2Cl +d22C2 = g2, d35C3 +d~5C5 = g3, d53C5 = g5 

6 
c4=c~, c6=c;, gm---E C6+~(u6+t(-nl,b,,) 

/=I 

The central problem in the scheme described above is to construct solutions of the four two-dimen- 
sional boundary-value problems (1.9)-(1.11), which split naturally into two pairs (within the limits of 
a pair the problems differ solely in the form of the right-hand sides). The first pair is problem (1.9), 
(1.10), the solution of which describes the stress-strain state of the spring that is most important in 
practice: stretching---compression and twisting about its axis. This can easily be seen from relation (1.17) 
if we take into account that Q2(rl) = Qz, r0Q3(rl) -M2(rl) = Mz, where Qz and Mz are the external axial 
force and external twisting moment, respectively. The second pair is problem (1.11), the solution of 
which describes, in the general case, a complex stress-strain state, the form of which is revealed be 
low by an asymptotic analysis of these problems for a spring with a relatively thin wire and a small 
pitch. 

When Qr = Ql(rl) and Q, = Q3(rl) are equal to zero, it follows from (1.18) that Cll = C 1 2  = 0 while 
ReC9 = d*lMr, ImC9 = dzlM,  and ImC9 = di-lM,, where Mr and M, are the radial and tangential 
components of the moment of the external forces about a point on the spring axis z = horl and 
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d. = -/d3s is a real quantity which follows from the general theory [4]. These moments are non-zero 
if, for example, the line of action of the force Qz does not coincide with the spring axis. 

All the boundary-value problems (1.9)-(1.11) are self-conjugate and can be reduced, using well-known 
methods [6], to finding the minima of the quadratic functionals 

W,, = S(W,, +lm)rdS, m = !,2,3,5 

W,,, = 01¥ml 2 +(l~ltm 12 -1"1[~22m 12 -t-1~33m 12 )-I- 2(1[~12m 12 +l[~13m 12 -I-1[~23m 12 ) (1.19) 

Igm = [~ll,n +~22m +~33m 

Expressions for ~ijm a r e  obtained from (1.3) for el/by replacing the component ui in them by ai6+m 
and the operator D by the operators D m from the group of formulae (1.15) 

l I = 4~131, /2 = 2(01112 +[~332)r1 r0 

l 3 = (2r[Im(0~l/3 + 13333) + 2 Re [~133 ]~2 + 4 Re(~2[$133 -- r~z~3 ))/(rro 2) (1.20) 

l 5 = 2 Re(0~l/5a~9 + [~225a~9 + 21~135a~9 + 213235a~9 ) 

Note 3. Since the homogeneous problem (1.9) has non-trivial solutions al and a2, while the homogeneous problem 
(1.11) has the non-trivial solution a3, the variational problems (1.19) are uniquely solvable with the additional 
conditions 

with rn = 1, 2 

with rn = 3, 5 

* a , ) a S  = = o, 
(1.21) 

(a,,,+ 6 * a~ )dS = S(alm+6 - ia3m+6)dS = 0 (1.22) 

2. THE ASYMPTOTIC SOLUTION 

Without going into detail on the analysis, we will explain the main ideas of the approach and give 
the final results. 

We will denote the characteristic linear dimension of the section S by a and we will introduce the 
following dimensionless parameters and coordinates for the spring 

e=a/ro ,  ~=ho la ,  a l = ~ l l a ,  ot2=~21a (2.1) 

Converting the equations and boundary conditions (1.9)-(1.11), taking (2.1) into account, we obtain 
boundary-value problems with the parameter 6. We will use e as a small parameter and we will assume 
that 13 = 0(1) with respect to 6. Seeking a solution in the form of series in a small parameter, we obtain 
a recurrent system of plane and antiplane problems of the theory of elasticity with different right-hand 
sides, the form of which depends on the order of the approximation. For an arbitrary section S, analytic 
solutions can be constructed only in low approximations, and only the first terms of the asymptotic 
expansions for the stresses and the coefficients of the stiffness matrix can be obtained in explicit form. 
Similar solutions can be obtained using the classical theory of curvilinear rods, which is based on the 
hypothesis of plane sections. The main difficulties are due to the construction of solutions for plane 
problems, which even for elliptical and rectangular cross-sections have no exact analytic solutions. The 
use of numerical methods, in particular the method of finite elements (MFE) to solve them is hardly 
convenient since it is equivalent in costs to the solution of the initial problems. When S is a circle, explicit 
analytic expressions can be obtained in high approximations. 

Below we give asymptotic expansions for the coefficients of the stiffness and stress matrix, which 
enable us to take into account the effect both of the curvature (the parameter ~), and the pitch of the 
spring (the parameter 13) on the stress--strain state. The refined formulae, which enable us to take into 
account the effect of the curvature on the maximum tangential stresses in the case of the stretching- 
compression of a spring, were apparently obtained for the first time by Timoshenko [7] and then refined 
[8-101. 

We will confine ourselves to the important practical case when Qr = Q~ = o. We have 
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dll = 1~3~t~22Bi, d12 = - ~ 4 ~ , 1 2 B I ,  d22 = e3~.~llB2, d ,  - - - / d 3 s  -- E4B 3 (2.2) 

_O(I)t~O) (2) (2)+Q(3)(o~3)cost~_Glj~)sin~)+Q (Oij ~b) O,~-~. _/j +Q GO (4) (4)cosC~+ff~3)si n 

Qfl) = iz-3Qzrol aBif~, Q(2) = £-3 Mzro2aB2[, ~ 

Q(3) = U-4 Mrro2aB3, Q(4) = f:4 Mtro2 aB3 

(~(1) ~ ¢(I) .t. e2'I ~e(2) ~(1) ..~ ~v I ¢(1) , ~2~ ~(2) 
31 =''~'lIJ31 ~'~ "~'12J31 ' ~'32 IJ32 "rr. ~12J32 

G(I) --o~ C(I) 33 -- " lm3 )' " " )  = O(  e2 ) 

(2) = E(~21f3(~) + ~,22f(?)), ~(2) = £(~,21f3(/) + ~, ¢(2))  31 22J32 u32 
O(2) ~ ¢(2) _ ~2,~ ¢(2) ~)  33 ='~22J33 ~-c '~2~J.~3 , o = 0 ( ~  2) 

f ( l )  31 = a2 - e5ctla2 / 4 + E2(X12a2 / 4, f~2) = [~(a 2 _ ealCt2) 

f3 ¢', + e ( 3 +  7a~ -3a~) /S+e2(-3a,  +a~ +3ot,a~)/S 2 =--0~1 

f 2) =l (l+2v)a2, ) 2) 

f.~2) = 2(1 + v ) a  I + ~ [ _ a 2 ( 4  + 5 v +  2 v 2 ) + 2 v ( a + 2 v ) a ~  - v ( 3 + 2 v ) ] / 4 +  

+ r e  2 [2(1 + 2v)tx~ - 2(3 + 2v )a~a  2 + (3 + 2v)o h ] / 4 

~,~ = l + e2(8 + 13v + 6v2) / [24(1  +v ) ]  

(2.3) 

~'12 - - - - ~ V / ( I + v ) ,  ~'21 ----~V, ~'22 - - 1 + ( 2 3 / 4 8 )  ~2, ~'~=~'11~"22 --E2~'12~'21 

,,v(3) __ ~-I  {_2k~l  + ,~(3) = [~-112k~ 2 + g ( v - v k + 3 k  / 4), ~'32 ~31 

+e[(5k + 5kv - 6 v ) a  2 / 2 + (3k + 2kv)a  2 / 4 + (2v - 3k - 2kv) / 4]} 

if(3) = ek[~-I [40v(tx2 _ ix2) + 2(1 + 2k + v)tx I - 2(1 + v)] 33 

G(3) = el3-1 [k / (I + 2v)- 4kOct 2 - 4vOq] II 

o(3) = ~13-I [-k / (I + 2v) + 4kOa 2 - 4va I - 4k13] 22 

O) = e2(k + 2v13 -I )a 2 1~12 

(3~4) ---- O(e2) ,  u32~(4) = e4ka2, u33--(4) = 4~- ,a2[k  + e4(1 + V)] 

..(4) = ~4[~-I (...4k0t3tl(X2 + 4ve t  2 ) rr(4) - g 4 V ~ - 1 ~ 2  ' ~'22 

(4) = el3-1 [k(ot2 + or2 2) I (1 - 2v) - 4vfx I ] 
12 

BI=a-4C, B2=a-4B22 , B3=4a"4~j-ICBIII(C+BII), k=Bl l l (C+Bl l )  (2.4) 

Bou a = 2(1 + V)l ~2dS 

In (2.4) laC is the stiffness to twisting of  a prismatic rod with cross-section S. 
Expressions in the form (2.2) and (2.3) in the principal terms of  the asymptotic expansions can be 

used for  a spring with an arbitrary wire cross-section. 

When the region S is a circle of radiusA, the expressions for Bj and k have the simple form 

B l = n l 2  , B 2 = g ( I + v ) / 2  , B3=~r.k , k = ( l + v ) / ( 2 + v )  

However, if the cross-section, orthogonal to the wire axis of the spring, is a circle (which corresponds more to reality), 
the region S will be an ellipse with semiaxes al = a, a2 = a(1 + e2~2) 1/2 (this follows from simple geometrical 
considerations: a2 = a/cosa, tgct = h/(2~ro) = el~) and we must use formulae (2.4), putting 
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C =/r, a4 (1 +E2~2) ~ ] (2+E2~ 2) (2.5) 

BI I = l~(l + V)(! + E2132 )~ / 2, B22 = •(1 + v)(l + e2~ 2 )~ / 2 

in them. 
In this case the error in calculating the main stresses due to the force Qz and the moment Mz, according to the 

above formulae, will have an asymptotic error of O(e3). 

We will present  further  refined formulae for the characteristics of  a spring of  most  practical impor tance  
[7, 11], name ly  for  its se t t l ement  A = uE(rl) and the m a x i m u m  shear  stresses Zmax, due to the axial force. 
We have,  with an asymptot ic  e r ror  of  O(e ~) 

A = ~ g , ( e , a ) ,  x , ~  =----~e2 ~ 2 ( e , a )  
P.roe 

(2.6) 
~ i~(e ,a)=  X(~qt -e.Xi2), 6 2 ( e , a ) = X X l l ( l + ~ e + ~ e  2) 

X = I'~ -I (2 + tg 2 ct)(l + tg 2 a )  -3/2 

3. R E S U L T S  O F  A N U M E R I C A L  A N A L Y S I S  

We carried out a number of calculations for a spring with an elliptical and a rectangular cross-section. In the 
case of an elliptical cross-section, using (2.6) we analysed the behaviour of the spring settlement and the maximum 
shear stresses as a function of the parameters e and a. The results are shown in Fig. 1 in the form of a graph of 
81(e, a)  (the dashed curves) and 82(e, a)  (the continuous curves). 

In the case of a rectangular cross-section the calculations were carried out using the method of finite elements 
(MFE). We chose as the finite element a rectangle with four nodal points, and solutions of the problems of the 
stretching and twisting of a spring (1.19) and (1.21) were constructed as linear combinations of the unknown nodal 
displacements and bilinear basis functions. 

The scheme for obtaining a system of algebraic equations from the variational equation, which is a consequence 
of (1.19), for the whole finite element grid, is standard [12]. However, a specific feature of the problems considered 
(y = 0 is an eigenvalue) is such that the system obtained is degenerate, so that the rank of a system of order n is 
equal to n - 2. The arbitrariness in the solution of such a system is removed using two additional conditions (1.21), 
in which case we need to take into account that the matrix ceases to be a band matrix and is symmetrical. 

The problems considered are illustrated by numerical calculations (MFE) and using asymptotic formulae (AF), 
which enables us to indicate the limits of applicability of the asymptotic form. Table 1 shows the stiffness 
dii, calculated, apart from the factors p. and r0 and orders ofkp, for a constant value of 13 = 0.15916 for a square 
cross-section. 

According to the results presented, the difference between the numerical and asymptotic data for dll with 
e < 0.09 does not exceed 2%, while for d22 it does not exceed 5%. The asymptotic formulae give an error greater 
than 10% with e t> 0.5. 
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Table 1 

MFE 

dl! 

I AF MFE 

d22 

I 
/9 

AF 

0.01 1.425 1.400 2.664 2.759 10 -5 
0.03 1.282 !.260 2.396 2.473 10 -4 
0.05 3.562 3.500 6.653 6.897 10 -4 
0.07 6.984 6.860 13.030 13.842 10 -4 
0.09 1.154 1.134 2.152 2.234 10- 3 
0. I 1.425 1.400 2.655 2.759 1 0-3 
0.3 1.289 1.260 2.362 2.473 1 0-2 
0.5 3.617 3.500 6.453 6.897 10 -2 
0.7 7.208 6.860 1.238 1.384 10-1 
0.9 1.221 1.400 1.990 2.234 1 0-1 

Table 2 

0.5 ~ !  5 1.0 0.03514 --0.1302879 0.06 ! 2 
0.5 r, Jl0 ! .08 0.03368 -0.004074 0.0566 
0.5 it./4 i .4 0.03812 -0.000461 0.3736 
0.9 ~ 1 5  1.0 11.97 -0.009543 19.28 
0.9 ~10 1.08 l i .40 -0.013787 17.83 
0.9 ~4  1A 11.86 --0.003426 I 1.90 

Table 2 illustrates the stiffness as a function of the density of the turns, where e is fixed in an interval inaccessible 
for an asymptotic form. The density of the turns is characterized by tgct, and its change for ct ¢ 0 leads to a 
consideration of a rectangle as the cross-section and not a square. 

The analysis of the convergence of the data as a function of the splitting is due to the choice of the specific splittings 
of 8 × 14 and 8 x 8 for a rectangle and a square respectively. 

T h i s  r e s e a r c h  was  s u p p o r t e d  by the  R u s s i a n  F o u n d a t i o n  for  Basic  R e s e a r c h  (97-01-00-464).  
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